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Abstract

Slug ¯ow is a very common occurrence in gas±liquid two-phase ¯ow. Usually, it is an unfavorable
¯ow pattern due to its unsteady nature, intermittency and high-pressure drop. For the calculation of
pressure drop and void fraction, the normal approach is to separate the slug unit into two zones, a
liquid slug zone and a ®lm or gas zone. The pressure drop is calculated using slug ¯ow models that were
developed on the basis of a solution of the momentum and continuity equations for these two zones.
When applying these models for downward ¯ow, conditions can be encountered where no solutions
exist. In this work, we closely examine these conditions and discuss their physical meaning. This includes
a detailed description of the slug dissipation process in a downhill section and the calculation of slug
dissipation distance. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Slug ¯ow is one of the most common ¯ow patterns in two-phase pipe ¯ow. Modeling slug
¯ow was ®rst proposed by Dukler and Hubbard (1975). The general approach of Dukler and
Hubbard was later used and/or modi®ed by Nicholson et al. (1978), Stanislav et al. (1986) and
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Taitel and Barnea (1990a). Similar models were also proposed for vertical ¯ow by Fernandes et
al. (1983), Orell and Rembrand (1986), Sylvester (1987) and Barnea (1990). Thorough reviews
of slug ¯ow can be found in Taitel and Barnea (1990b) and Fabre and LineÂ (1992).
The above mentioned models are very useful for horizontal and upward ¯ows. However, if

one tries to apply these models for downward inclined pipes, cases are often encountered in
which there are no solutions to this problem. Clearly, this suggests that the ¯ow in the
downward section is strati®ed. Thus, the slug ¯ow model can be used as a means for ¯ow
pattern prediction (Bendiksen and Espedal, 1992). This also means that slugs will dissipate in a
downhill pipe section.
The present work is aimed at theoretically analyzing these cases, explain the physical

phenomena of slug dissipation in downhill pipes, and proposing a method for calculating the
downhill dissipation distance.

2. Analysis

2.1. Slug ¯ow modeling

The modeling used for steady slug ¯ow was described in detail in a review paper by Taitel
and Barnea (1990b). The analysis assumes identical slugs and the calculations are performed
on a single typical slug unit. A schematic geometry of the system is shown in Fig. 1. A typical
slug unit consists of a liquid slug zone (that may contain gas bubbles) of length ls followed by
a ®lm (and gas) zone of length lf :
It is assumed that the translational velocity of the nose of an elongated bubble behind a

liquid slug, Vt, can be expressed as a function of the mixture velocity of the slug, Us, in the
form proposed by Nicklin (1962),

Fig. 1. Slug ¯ow geometry.
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Vt � CUs �Ud �1�
where the mixture velocity, Us equals the sum of the liquid and gas super®cial velocities, ULS �
UGS: Ud is the drift velocity, or the velocity of the elongated bubble at the limit of Us40: C is
an empirical velocity distribution parameter that is approximately equal to the ratio of the
maximum to the mean fully developed velocity pro®le. Nicklin (1962) proposed a value of C =
1.2. For laminar ¯ow, C is about 2.0 (Fabre, 1994). For the drift velocity in horizontal and
upward inclined pipe ¯ow, Bendiksen (1984) proposed the use of

Ud � 0:54
�������
gD

p
cos b� 0:35

�������
gD

p
sin b �2�

where D is the pipe diameter, g the acceleration of gravity and b is the inclination angle
measured from the horizontal. The theoretical basis for this equation is given by Benjamin
(1968) for the horizontal case and by Dumitrescu (1943) for the vertical case. Bendiksen (1984)
showed that experimental data quite accurately follows Eq. (2), which uses the horizontal and
the vertical formulations multiplied by the cos and the sin of the inclination angle, respectively.
The liquid holdup within a slug, Rs, is assumed to be a function of the liquid mixture

velocity. Gregory et al. (1978) proposed the following correlation,

Rs � 1

1�
�
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�1:39
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Barnea and Brauner (1985) developed the following expression.
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where s is the surface tension, fs is the liquid slug friction factor and rL and rG are the liquid
and gas densities. For large Us, a limiting value of Rs � 0:48 is used (Taitel and Barnea,
1990b).
Modeling the liquid ®lm behind the slug is somewhat more complicated and requires a

solution of the liquid level pro®le as a function of the distance from the liquid slug tail (see
Taitel and Barnea, 1990b). However, as an approximation that simpli®es and speeds
calculations, it is common to assume a constant ®lm level equal to the equilibrium level that
satis®es the quasi-equilibrium force balance.

tfSf

Af

ÿ tGSG

AG

ÿ tISI

�
1

Af

� 1

AG

�
� �rL ÿ rG�g sin b � 0 �5�

along with mass balances for the liquid and the gas relative to the bubble nose velocity, Vt.

�Vt ÿUf �Rf � Rs�Vt ÿUs� �6�

�Vt ÿUG��1ÿ Rf � � �1ÿ Rs��Vt ÿUs� �7�
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where

tG � fG
rGU
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G

2
; tf � ff

rLUf jUf j
2

; tI � fI
rG�UG ÿUf �jUG ÿUf j

2
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In these equations A is area, S, wetted periphery, U is velocity, t is shear stress, f, friction
factor, R holdup and r is density. The subscripts G, f, I, s refer to the gas, liquid ®lm, interface
and slug, respectively.
For the liquid ®lm and the gas shear stresses, the friction factors, ff and fG can be

approximated by f � CReÿn, where C � 0:046, n � 0:2 for turbulent ¯ow, and C � 16, n � 1
for laminar ¯ow. The Reynolds numbers were de®ned as Ref � 4UfAfrL=SfmL for the liquid
and ReG� 4UGAGrG=�SG�SI�mG for the gas �m is the viscosity). For the interfacial gas±liquid
shear stress, we used a constant value fI � 0:014 (Cohen and Hanratty, 1968).
The implicit Eq. (5) is then solved numerically for the liquid holdup in the ®lm, Rf and the

liquid velocity, Uf .
The slug length is a fairly constant parameter and it is considered here as having a known

value of 30 pipe diameter (Nicholson et al., 1978) while the slug unit length is calculated on the
basis of liquid mass balance. Usually, the precise value of the liquid slug length is not
important for the calculation of the pressure drop and holdup since the aforementioned
variables are primarily e�ected by the ratio of the liquid slug length to the slug unit length.
Liquid continuity requires that:

ULSA � ULARs

ls
lu
�UfARf

lf
lu

�9�

where ls is the length of the liquid slug, lf , the ®lm length and lu is the slug unit length �lu �
ls � lf�: Eq. (9) is used to calculate the slug unit length which yields:

lu � ls
ULRs ÿUfRf

ULS ÿUfRf

�10�

2.2. Slug modeling limitations for downward inclination

This model works for horizontal and upward ¯ows. However, for downward ¯ows, there are
¯ow conditions for which a solution of this set of equations does not exist. These cases are
analyzed below from both mathematical and physical aspects.

2.2.1. Case 1: no solution to Eq. (5)
Solutions to Eq. (5) (with Eqs. (6) and (7)) may not exist for low liquid and gas ¯ow rates.

Clearly, this is the case where steady state ¯ow will be strati®ed.
Nevertheless, slugs from an upward inclined section can be carried over to a downward

inclined section after passing a top elbow, and they are expected to travel some distance in the
downward inclined section before they completely dissipate.
The physical meaning of this lack of solution is that the liquid ®lm travels faster than the

liquid slug mixture. This can be veri®ed using Eq. (6). As we decrease the liquid ¯ow rate or
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super®cial velocity, ULS (keeping the gas ¯ow rate constant), the liquid ®lm holdup increases
until it reaches a maximum, which is equal to unity when the liquid slug is free of gas bubbles,
or equals to the liquid slug holdup, Rs. In this case, we reach the limit of the liquid ®lm
velocity, which is Uf � Us, as is evident from Eq. (6). Under this condition the tail of the slug
will not shed any liquid to the ®lm behind it since the ®lm velocity is larger than the slug
velocity. Thus the translational velocity, Vt, of the bubble nose (slug tail) is just ULS �UGS:
On the other hand, at the slug front, the liquid will be shed forward and the bubble in front

of it will penetrate into the slug. This is the condition Bendiksen (1984) termed as `bubble
turning'. We propose that the slug front velocity can be obtained as a superposition of the two
e�ects, the drift e�ect and the velocity pro®le e�ect. The drift velocity, which is the penetration
velocity of the bubble into a stagnant liquid, will be given by Benjamin (1968) and Dumitrescu
(1943) theories modi®ed by Bendiksen (1984) in Eq. (2). Unlike the situation at the slug tail
where the velocity pro®le may result in a shedding since slow moving liquid adjacent to the
pipe wall can be left behind, the situation is di�erent in the front of the slug. It is assumed that
the `distribution parameter' at the slug front is unity. Thus the front velocity, Vf , in this case
will be:

Vf � Us ÿUd �11�

2.2.2. Case 2: Film length is negative
This is the case for which a solution to Eqs. (5)±(7) does exist but ®lm length lf calculated by

Eq. (10) is negative. This is again the case where steady slug ¯ow does not exist. A negative
®lm length prediction can take place in one of the two cases: (1) if the ¯ow is dispersed bubble
¯ow; and (2) if slugs dissipate downstream. The ®rst sub-case is easy to realize where there is
not su�cient gas to form an elongated bubble and the gas moves forward as dispersed bubbles.
The second sub-case results from the complete dissipation of slugs in the downhill section.
The following physical process takes place during slug dissipation. When a slug passes a top

Fig. 2. Slug ¯ow behavior in top elbow (a) Normal slug ¯ow; (b) Slug dissipation in downhill section, case 2.
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elbow, the ®lms near the top elbow ¯ow forward in the downward section and backward in the
upward section and the zone near the top becomes dry (see Fig. 2). Therefore, the slug front
velocity is Us, that is the velocity of the mixture. This is di�erent from case 1 where the
proceeding bubble is assumed to penetrate the liquid slug (`bubble turning') and the ®lm moves
faster then the slug mixture velocity. In this case the slug velocity is faster than the ®lm
velocity and it would have overtaken and scooped any possible ®lm in front of the liquid slug.
The slug tail velocity is equal to the translational velocity given by Eq. (1) which is greater
than the front velocity. Thus, the ®rst slug dissipates in the downhill direction. The next
approaching slug that passes the top elbow will decrease in length as it passes through the dry
zone. If this slug overtakes the ®lm in front of it before completely being dissipated, then a
normal slug ¯ow in the downhill section will ensue, but the slug length will be considerably
shorter (Fig. 2(a)). However, if the slug dissipates completely before reaching the liquid ®lm,
then the ¯ow will be strati®ed ¯ow and we will get (theoretically) a series of liquid ®lms
separated by dry zones (Fig. 2(b)). In practice, these series of ®lms will eventually merge to
form a continuous strati®ed ®lm ¯ow.
This is precisely the case that takes place when the steady state solution for slug ¯ow results

in a negative ®lm length. The proof of this is not straightforward. To prove this, we used a
slug-tracking program (Zheng et al., 1994; Taitel and Barnea, 1998) which allows one to track
normal hydrodynamic slugs and predict their behavior when passing a top elbow.
Indeed, we found that the slug ®lm length, lf , can change from a positive real solution to a

negative false solution as the liquid ¯ow rate is decreased. This is precisely when we move from
normal hydrodynamic slug ¯ow in the downhill section (Fig. 2(a)) to the case where slugs
dissipate completely in the downhill section resulting in strati®ed ¯ow (Fig. 2(b)).
At present, determination of the distribution parameter C and the drift velocity Ud for

downward ¯ow is not quite clear. Here, we will assume that for downward ¯ow, the
distribution parameter will be the same as for upward inclination since it results from the
velocity pro®le, which is the same for downward and upward ¯ows. The more controversial
parameter is the drift velocity. We will assume that this velocity is zero for the following
reason: for upward ¯ow, the drift velocity is the velocity of a bubble into stagnant liquid.
Applying this de®nition also for downward ¯ow, we note that a bubble on top of stagnant
liquid in downward inclined pipe will not move, which means that the drift velocity is zero.
Clearly, the validity of Eq. (1) for downward ¯ow is not certain. Yet, it can probably be used
as an approximation even if it is not truly valid.

2.2.3. Case 3: drift velocity is negative
Although we do not consider the case where the drift velocity is negative (for the slug tail),

there are some claims (Bendiksen, 1984) that the drift velocity in the downward direction may
sometimes be negative. A negative drift velocity posses no problem to the solution, provided it
is not too large. Expressing Eq. (6) in the following form

Rf �
��Cÿ 1��ULS �UGS� �Ud

�
Rs

C�ULS �UGS� �Ud ÿUf

�12�

shows that when the drift velocity is negative and large, that is jUdj > �Cÿ 1��ULS �UGS�, the
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liquid holdup of the liquid ®lm is negative. Obviously, this is not a realistic case. The
dominator in Eq. (12) is equal to �Vt ÿUs�Rs: Vt � Us means that the translational velocity is
equal to the mixture velocity in which case there is no back shedding. Eq. (12) correctly
suggests that in this case, Rf is zero and there is no ®lm behind the slug. This case is not a
realistic case and we will assume that for downward ¯ow the drift velocity (assuming it is
negative, which is not the assumption used here), should satisfy the relation:

�Cÿ 1��ULS �UGS� �Ud > 0 �13�

2.2.4. Dissipation length
Once the slug front velocity Vf and tail velocity Vt are known, a dissipation velocity can be

de®ned as Vdis � Vt ÿ Vf : Assuming that the dissipation velocity is constant, the dissipation
time is

tdis � ls
Vdis

� ls
Vt ÿ Vf

�14�

and the dissipation length will be

Ldis � Vttdis �15�
However, we still need to know the liquid slug length in the downhill section in order to use
Eq. (15).
Consider the case of a pipe in which the downward section is preceded with an upward

section. In the upward section usually we will have slug ¯ow. In the downward section we may
have slug ¯ow; however, usually slugs will be dissipated in the downhill section, resulting in
strati®ed ¯ow. Assuming we know the slug length in the uphill section, we want to know the
slug length after the slug has passed the top elbow. Slugs tend to decrease in length as they go
through the dry top elbow. Thus, before we use (Eqs. (14) and (15)) to calculate the dissipation
distance we need to know the slug length on top of the downward inclined section.
For the case of steady slug ¯ow, the change of slug length as it moves from one section to

another was presented by Zheng et al. (1994).

ls,II
lu,I
� Rs,I ÿ Rf,I

Rs,II ÿ Rf,II
� Uf,IRf,I ÿUf,IIRf,II

Vt,I

ÿ
Rs,II ÿ Rf,II

� lu,I
ls,I

�16�

where I refer to the slug properties in one section and II to its properties in the second section.
The derivation of Eq. (16) is based on the continuity of liquid ¯ow rate (Eq. (9)) also using
continuity across the bubble interface (Eq. (6)) and considering slug frequency constant
�u � lu=Vt). However, Eq. (16) is valid for steady state in which case slugs shrink in size when
they move from an uphill section to a downhill section, but do not dissipate completely. When
they dissipate completely, we need to know the slug size just after passing the top elbow. This
is the slug length when the tail of the slug coincides with the top elbow. This length can be
calculated easily considering a slug in the middle of the top dry elbow. The tail velocity is the
same as in the uphill section. The front velocity is already in the downhill section and its front
velocity can be calculated as in case (1) and (2) (Eq. (11)). The time of passing will be
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ls,uphill=Vt,uphill in the upward section. Right after this time the tail will coincide with the top
elbow and the slug front will be at ls,downhill��ls,uphill=Vt,uphill�Vf,downhill:

3. Results and discussion

In Figs. 3 and 4, we mapped the three cases possible for downward slug ¯ow for a water±air
system, at atmospheric pressure, room temperature, 5 cm pipe diameter, and ÿ18 inclination
angle. In Fig. 3, we assumed the liquid slug is free of entrained bubbles, Rs � 1: As can be
seen, for low liquid and gas ¯ow rates, the `no solution' is due to case 1, while for higher gas
¯ow rates it is due to case 2. For higher liquid ¯ow rate there is a solution for steady slug ¯ow.
Thus, at ¯ow conditions of high liquid ¯ow rate, slugs will not dissipate.
Fig. 4 maps the same condition, but allows gas bubbles to be present in the liquid slug zone.

Clearly, this is a more realistic condition. The liquid slug holdup, Rs, is calculated using Barnea
and Brauner (1985) model. Note that case 2 also appears at the top (high liquid ¯ow rate). As
mentioned previously, case 2 consists of 2 sub-cases. The ®rst is when slugs dissipate downhill
and the second is the case when the ¯ow is dispersed bubble.
It is not the purpose of this work to consider ¯ow pattern prediction. However, Fig. 5 is a

¯ow pattern map based on Barnea's (1987) model, for the same conditions as in Figs. 3 and 4.
It is very surprising that the slug/strati®ed and slug/dispersed bubble transitions nearly coincide
with those predicted by the slug model. Transition to annular is not handled by the slug
model. The ¯ow pattern transition and slug models are quite di�erent. In the slug model
transition boundaries are determined by a `no solution' criterion for slug ¯ow i.e. slug

Fig. 3. The regions of no solution for water±air, 5 cm diameter, ÿ18 inclination, Rs � 1 (W steady slug ¯ow, r case
1, q case 2).
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Fig. 4. The regions of no solution for water±air, 5 cm diameter, ÿ18 inclination, Rs by Eq. (4) (W steady slug ¯ow,

r case 1, q case 2).

Fig. 5. Flow pattern, water±air, D � 5 cm, ÿ18 (downward r strati®ed ¯ow, � dispersed bubble, W slug ¯ow, Ð
annular ¯ow).
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dissipation, while the Barnea and Brauner (1985) transition to slug ¯ow occurs due to Kelvin±
Helmholtz instability. The possibility of considering slug ¯ow dissipation model as a tool to
predict strati®ed/slug ¯ow transition boundary was discussed before (Bendiksen, 1984,
Bendiksen and Espedal, 1992 and Bendiksen et al., 1996). Bendiksen and Espedal claimed that
the prediction of the slug ¯ow dissipation model is a necessary, but not a su�cient condition,
for slug ¯ow to persist. For high-pressure system, they concluded that the slug dissipation
mechanism is the more restrictive one and thus could be applied alone to predict strati®ed/slug
transition. The Bendiksen and Espedal slug dissipation model is not the same as the one
presented here, although the general idea of examining the stability of slugs is similar. In a
later paper, Bendiksen et al. (1996) suggested that the ¯ow pattern depends on the entrance
conditions. When the ¯ow is strati®ed at the entrance then transition to slug ¯ow will take
place as a result of Kelvin±Helmholtz instability. However, when ¯ow pattern at the entrance
is slug ¯ow, then transition from slug ¯ow to strati®ed ¯ow will take place as a result of the
slug dissipation process. Clearly, the two boundaries are not identical.
Based on the above discussion we see little contradiction between the boundaries in Figs. 4

and 5 and accept Bendiksen et al. (1996) approach. Thus, Fig. 4 predicts the transition from
slug ¯ow to strati®ed ¯ow provided the entrance conditions are slug ¯ow. Similarly, Fig. 5
represents the usual ¯ow pattern boundary starting from strati®ed ¯ow at the entrance. As a
cautionary note, the slug dissipation model in this work was not aimed at providing ¯ow
pattern prediction method. It is premature to speculate its applicability for ¯ow pattern
prediction.
Fig. 6 shows the calculated slug dissipation length for the same conditions treated before.

For these calculations, it is assumed that the slug enters the downhill section from an uphill
section of +18 inclination (see Fig. 2) and that in the uphill section the slug length is 30D (1.5

Fig. 6. Slug dissipation length, water±air, D � 5 cm, ÿ18 downhill.
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m). After passing the top elbow, the slug shrinks in length and its length on the downhill side
is calculated as previously outlined. Knowing the tail and front velocities of the slug in the
downhill section we can calculate the dissipation distance using Eqs. (14) and (15).
The curves in Fig. 6 show the dissipation lengths as a function of liquid ¯ow rate for various

values of gas ¯ow rate. This is equivalent to moving along vertical lines on Fig. 4. The slug
dissipation distance increases with increasing gas ¯ow rate. The liquid ¯ow rate has a
substantial e�ect only for low gas ¯ow rates and its e�ect is negligible for high gas ¯ow rates.
The curves are terminated on the `right' when steady slug ¯ow is possible (see Fig. 4). Note
that this termination is based on Fig. 4 and it is not transparent from the slug dissipation
length calculation.
In Fig. 6, both case 1 and case 2 are used. As shown in Fig. 4, for ¯ow rates below 1 m/s,

case 1 is applicable, while for ¯ow rates above 1 m/s, case 2 is valid. Note that for a gas ¯ow
rate of 1 m/s, case 1 occurs at low liquid ¯ow rates and case 2 occurs at higher ¯ow rates. This
is re¯ected in Fig. 6 by the abrupt increase in the slug dissipation length around ULS10:6 m/s.
Note also that for very low liquid ¯ow rates and low gas ¯ow rates, the slug dissipation length
is zero. That is, slugs are dissipated instantaneously as they pass the top elbow.

4. Summary and conclusions

The `no solution' for the slug model in downward inclined pipes is analyzed. It is shown that
the `no solution' situation can result for two basic reasons: (1) the ®lm velocity is faster than
the mixture velocity, and (2) either a slug passing through a top elbow dissipates before
overtaking a ®lm that was shed by the previous slug, or, ¯ow pattern is dispersed bubble.
Both cases result in the dissipation of the slugs in the downhill section and transition to

strati®ed ¯ow takes place. A simple model for the calculation of the slug dissipation length in
both cases is presented and a speci®c example, to demonstrate the applicability of the theory, is
included.
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